


The Influence of Chemical Change on Protein Dynamics: A Case Study with Pyruvate Formate-lyase

Marko Hanževački,¹ Karmen Čondić-Jurkić,² Ana-Sunčana Smith,^{1,3} David M. Smith¹

¹Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia

²Research School of Chemistry, Australian National University, Canberra, ACT, Australia

³Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Staudtstraße 7, Erlangen, 91058, Germany

Pyruvate formate-lyase (PFL) catalyzes the break down of pyruvate into formate and the acetyl group upon the addition of a thiyl radical located at Cys418.^[1] The radical is initially stored at Gly734 is shuttled to Cys419 via Cys419. The addition of radical Cys418-S· to pyruvate leads to C-C bond dissociation, resulting with formation of formyl radical and acetyl-Cys418. The latter species acts as a temporary acetyl carrier and a reactant in the subsequent half-reaction with the second substrate CoA to produce acetyl-CoA. Formation of Ac-CoA, the final product, closes the catalytic cycle of PFL.^[2]

The investigated aspect of this mechanism concerns the process that allows CoA to enter the active site, which is a prerequisite for the second half-reaction. The problem with this step is that the binding site of CoA is located at the protein surface, while the active site is buried in the protein interior.^[3] In search for possible solutions to this problem, the PFL system was subjected to long unrestrained molecular dynamics simulations.

The models representing the PFL system before and after the first half-reaction with pyruvate were used to examine the possible effect that acetylation of the enzyme has on the necessary conformational changes. The PFL protein comes in a homodimeric form and two sets of models were derived from the available crystal structure; one set of models was built using a single subunit (mPFL⁷³⁴GLY·, mPFL⁴¹⁸CYS·, mPFL⁴¹⁸AcCYS), while the other contains the full dimer (dPFL⁷³⁴GLY·, dPFL⁴¹⁸CYS·, dPFL⁴¹⁸AcCYS).

[1] Knappe, J.; Blaschkowski, H. P.; Gröbner, P.; Schmitt, T. *Eur. J. Biochem.* **1974**, 50, 253.

[2] Guo, J.-D.; Himo, F.; *J. Phys. Chem. B* **2004**, 108, 15347.

[3] Becker, A.; Kabsch, W. *J. Biol. Chem.* **2002**, 277, 40036.